The Front Door

March 21, 2012

I was so excited to see Denise’s blog this month, Façade Face Lift. I love doors and entryways; we get a strong impression of the building or home from the front door. Entries are your first interaction with your home after being away, or for your visiting guests as they arrive to enjoy your company.

55 Cliff_exterior_1

One of our newest additions in Wellesley and one of my favorites.  Our client loves the special detail of the small overhead light that is activated by a motion-sensor – perfect for key-finding.  Construction by The Riverview Company.

Many homes have entry design challenges that fall under a few categories. Do you recognize your own home in any of these scenarios?

1. Come on in, but please don’t look. Nobody uses the front door, and the back door is ugly and doesn’t work. This item is especially prevalent in older homes built before most everybody had cars. Once most people had cars and garages, the closest door to the drive, often a small back or side door next to the kitchen, became the most used door for the house.

IMG_3248

This was the family and guest main entry, hidden behind the garage. The door is right next to their Eating Area table.

160

A new generous entry is in keeping with the rest of this lovely Wellesley home. Our client filled her window boxes as soon as they were finished.  Construction by The Riverview Company.

2. Where’s my right boot? No easy storage at the family’s entry. The word ‘easy’ is important here. If you and/or your family are normal, shoes, coat, keys and purses will be deposited on the first surface available. Thoughtfully designed storage with habits and lifestyles in mind makes a big difference. I like to design hooks and a kick-under bench, but with a closet to shift items as items pile up on the hooks and under/on the bench.

IMG_3758

Taken from the web….but most of us can relate.  except for the mini-well (?)

Mud Room_2

For this new basement entry, we added lots of storage with hooks, a closet, open shelving and a lift-top bench.  Construction by The Riverview Company.

174

As part of this addition, we created a generous formal entry space with large closets.  Construction by The Riverview Company.

IMG_1164

A small custom built-in with cubbies and a lift-top bench where space was limited.  Construction by The Riverview Company.

img33i img31i

A free-standing storage system can work wonders.  These are from Pottery Barn.

3. Hello? Can’t find the door or don’t know which one to approach. This is one of those challenges that we don’t think of until we have visitors and think about our home from their perspective. If you need to give directions to the door before you have a visitor, this might be an issue for your house.

DSC03472

You would think you’d go in the middle door in the back, well you don’t.  That would bring you to a tiny space leading to two tiny doors that will take you to the living spaces.  So you can pick from one of the many doors on the ‘L’ which will bring you right into the Kitchen or the Eating Area.

Greenbridge_2_32

As part of the renovation and addition, we created a clearly defined entry using  a pergola, lighting and sidelights on either side of the French door.  Construction by Becker Builders.

4. Door in name only. The front formal door is used at Halloween only. Reasons vary – maybe it can’t be seen easily, or it has no character, or other design problems making it uninviting, or common in new construction, there is no walkway leading to it!!

imagesCA44ULAM

I wouldn’t trick or treat here!

IMG_2831

We love projects like this – let’s get drawing!!

001

The rebuilt entry and porch have rich classical detailing, with inviting lighting, a generous landing with wide steps, AND a new walkway from the drive.  Construction by The Riverview Company.

Greenbridge_1_26s

This new entry in Georgetown, complete with new garden walls and paving (by UBLA design) was transformative.  Constructed by Meadowview Builders.

If your home has any of these ‘issues’, rest assured, you can make it better. The ideal entry is one where the landscape welcomes and brings you to a protected and well-detailed doorway, and on the interior has generous space and thoughtfully planned storage.  Feel free to contact me if you’d like some assistance with your design plans and estimates of associated costs.

Happy Spring!

Juli MacDonald

GreenBridge Architects

juli@greenbridgearchitects.com

978.518.2811

Intrigued by Geothermal?

February 13, 2012

In my experience, geothermal systems are generally desired but widely misunderstood. Many of us understand that geothermal systems take advantage of the earth’s temperature to heat and cool buildings, that they involve deep drilling and that they are expensive to install, but cheaper to run that conventional heating and cooling equipment. Beyond that, general knowledge gets dicey.

This blog will give you an overview of geothermal systems, especially as they relate to residential applications. My description of geothermal systems is pulled from April’s Architect Magazine with additional input from Melanie Head at EnergySmart Alternatives. If after reading this, you are interested in geothermal for your own home, I would strongly suggest that you consult with a trained and experienced expert to find out more. My go-to local geothermal expert is EnergySmart Alternatives out of Wakefield, MA. Not only are they experienced installers and contractors, they have a team of engineers who make sure that every installation is done right.

Geothermal Systems – What Are They?

Geothermal systems for buildings, also known as geothermal heat pumps or ground-source heat pumps (GHPs), use the thermal energy stored in the upper portion of the Earth’s crust to heat or cool a building, replacing conventional heating and air-conditioning systems. “The temperature of the Earth down 20 or 30 feet is a relatively constant number year-round, somewhere between 50 and 60 degrees , says John Kelly, the COO of the Geothermal Exchange Organization, a nonprofit trade organization in Washington, D.C. “A geothermal heat pump moves heat to and from the Earth by circulating water through a well.”

In other words, in winter, a GHP moves the thermal energy from the earth into a building, and in summer it reverses that process, transferring heat from a building into the earth. These systems incorporate a piping loop buried in the ground through which anti-freeze is circulated, and the heat pump extracts the temperature from the anti-freeze and distributes it through the building, much in the same way that central air conditioning works. Alternatively, groundwater is directly circulated through a series of wells.

Either way, GHPs are significantly cheaper to operate than conventional heating and cooling systems. “The cost savings occur because the ground offers starting temperatures closer to what is desired for heating and cooling than the seasonal temperature extremes upon which many conventional air-source HVAC systems rely,” says John Rhyner, a senior project manager at P.W. Grosser Consulting in Bohemia, N.Y., a civil engineering firm that specializes in geothermal. “It takes less energy to make up that smaller difference in temperature,” Rhyner says.

heat_transfer

diagram showing heat transfer to and from the Earth in Cooling and Heating Seasons

The three most common types of GHP systems are closed-loop, open-loop, and standing column well.

Open loop systems circulate anti-freeze through a sealed network of pipes buried underground. The anti-freeze within the pipes transfers heat from the earth to the building during the winter, and vice versa during the summer, by way of a heat exchanger. Since the anti-freeze flows in a closed loop, it does not exchange all of its temperature; it can get as warm as 80 to 90 degrees F in summer and as cold as 40 to 30 degrees F in winter. For this reason, the anti-freeze is usually a food-grade antifreeze with freeze protection between 15F to 20F (for example, ethanol) to keep the fluid from gelling during the winter months.

Closed-loop systems can be laid out either horizontally in fields, buried just beneath the frost line, or vertically in wells, bored typically 200 to 500 feet deep. Horizontal systems are generally used for smaller or residential projects with plenty of space. In geographic locations where there are few rocks and bedrock is not present close to the surface, horizontal loops are cheaper to install. However, horizontal loops are affected by outdoor air temperatures, meaning that they can become less efficient as a season progresses as the soil takes on the characteristics of the air temperature.Horizontal loop systems typically require large amounts of land. “For a closed-loop system, it’s all a function of how much pipe you can get in the ground with the open land area you have available to work with,” Rhyner says.

Vertically drilled closed-loop systems are more efficient than horizontal systems, as more of the pipe is in contact with a more constant earth temperature. They are most efficient if they can be drilled into groundwater rather than dry ground, since water is a good conductor of heat. “You get a certain number of tons per linear footage [a ton of heat is 12,000 British thermal units per hour], and can get more pipe in the ground going vertically than horizontally,” says Rhyner.

Standing column wells are another type of open-loop system that is well suited where bedrock is close to the ground surface. Standing column wells are typically less deep than vertical closed-loop systems with similar heat output capacity. Whereas vertical closed-loop borings are typically 250 to 400 feet deep, standing column wells can be anywhere from several hundred feet to over 2,000 feet deep. Steel casing is installed to hold the borehole open up to the depth of bedrock. The remaining depth is drilled through bedrock and is left as an open rock borehole. In these systems, the groundwater is pumped up from the bottom of the well, passed through the GHP, and then returned to the top of the well, where it filters slowly downward, exchanging heat with the surrounding bedrock.

Choosing which of these systems is right for a specific project requires calculating a building’s heating and cooling demand and conducting a subsurface analysis to determine the thermal capacity of the site, and how many wells or how large of a loop field will be needed. If the calculations are done correctly and the system is properly designed, GHPs can handle all of a building’s heating and cooling loads, no matter what climatic conditions prevail.

High Upfront cost versus Return on Investment

When designed and installed correctly, GHPs drastically reduce the amount of energy needed to heat and cool a building. According to the U.S. Environmental Protection Agency, GHPs are 48 percent more efficient than the best gas furnace and 75 percent more efficient than the best oil furnace. They require 25 to 50 percent less energy than other HVAC systems and bring down operation and maintenance costs by as much as 40 percent.

The main inhibitor to the wide-scale adoption of GHPs today is the relatively high up-front cost of installation. The main difference in cost between GHPs and conventional systems is the drilling cost. The mechanical equipment itself—the heat pumps and heat exchangers—is no more expensive than high-efficiency conventional heating and cooling systems. Annual savings on energy bills, however, offset the up-front cost. When taking advantage of the available incentives, payback periods for commercial GHP systems can be as little as 5 to 7 years when replacing an aging, inefficient HVAC system. GHP systems are especially cost-competitive against many conventional systems in new construction. In the past, GHPs were primarily popular with municipal and institutional clients, building owners who planned to inhabit and operate their facilities over the long term, and those who were simply more interested in environmental stewardship than the bottom line. With the currently available incentives and the high price of fossil fuels, payback periods have been significantly reduced making GHPs an attainable investment for more building owners.

The cost of installing a geothermal system can vary depending on site specifics. In existing buildings, challenges like duct routing, construction type, and space restrictions can affect the cost significantly. Such challenges are more easily overcome in new construction where these issues can be discussed with the architect or builder early in the design process. Your chosen geothermal company will be able to assist you with a cost analysis for the system that is best suited for your home. Their analysis will factor in the cost of installing a traditional heating and cooling system, the cost of fossil fuel and the available local and federal incentives. The following links have information on these incentives from both federal and local programs.

Federal Residential Renewable Energy Tax Credit  (30% of the price of the system)

Massachusetts Incentives/Policies for Renewables & Efficiency

Local energy company incentives may also be available.

drillingrig

a geothermal drilling rig

Common Myths About Geothermal

It’s surprising how often the same questions and comments arise regarding geothermal systems. The following, part of Energy Smart Alternatives’ ‘Geothermal Demystified’ series, sheds some light on some of these common misunderstandings regarding geothermal installations.

Myth #1: Backup Heating

There is a common misconception that GHPs are not able to provide 100 percent of heating requirements. This simply isn’t true. A properly designed GHP system will provide all of the heating and cooling requirements of the building. There is no need whatsoever to install a gas or oil boiler to provide a backup heat source.

 

Myth #2: Winter Installation

Transitioning from a fossil fuel heating system to a GHP in the winter can be a challenge. In most cases, the home will be without heat for one or two days while the new geothermal system is being installed. Although a temporary heat source can be used while the transition is being made, some homeowners choose to just add a few layers of clothing.

The drill rig used for vertical installations can drill through bedrock and certainly has the capacity to drill through frozen soil and ice. Trenching in winter can be difficult, though; the degree of difficulty depends on your geographic location and ground cover conditions.  When trenching in a small area, a few straw bails can keep the ground from freezing long enough to complete the installation. In some cases, excavators may not be willing to dig in the winter because of wear-and-tear on equipment.

Myth #3 Concerns about bedrock or ledge

Installing a vertical geothermal boring through bedrock is not a problem. Geothermal boreholes are created by cutting and grinding a 6-inch core through bedrock; there is no blasting, hammering, or pile driving. An experienced driller can drill between 200 and 300 feet through solid bedrock in one day. In New England, bedrock will usually be encountered within 50 feet of the ground surface and is encountered on almost every single geothermal installation.

Some homeowners have expressed concerns about drilling through bedrock in close proximity to their own, or their neighbors’, basement foundation wall. To my knowledge, no foundation damage has ever occurred – even when the borings were advanced within 10 to 15 feet of a foundation wall. The drilling will not cause an earthquake. It will not rattle the entire neighborhood.

Shallow bedrock can be an obstacle to horizontal closed-loop installations where hundreds of linear feet of trench are required. It can also be a problem when trenching between the location of vertical borings and the basement foundation wall. A careful evaluation of the site prior to digging will dictate the location of drilling or excavation so as to minimize encounters with ledge during excavation activities.

 

Myth #4 Concerns about wasting money on drilling.

EnergySmart’s team has installed over 200 tons of geothermal heating systems throughout New England and there has never been a situation where drilling has occurred and the installation has not been completed. First, it starts with an understanding of how the underground components of a geothermal systems actually work.

For both horizontal and vertical closed-loop systems, the heat transfer occurs between the soil or bedrock and the geothermal piping to the antifreeze circulating through the pipe. While groundwater improves the heat transfer properties of the underground portions of a closed-loop system, the presence of copious amounts of groundwater is not absolutely critical to the operation of the system. The presence or absence of groundwater should be accounted for in the design process but does not preclude the installation and effective operation of a GHP system.

Open-loop systems circulate groundwater through the GHP system.  It is imperative that the well has enough capacity to support the geothermal system.  Low well capacity can be overcome by fracking the well or deepening the well to increase its capacity and yield (this is a chemical-free fracking technique that is completely different from that used by the natural gas industry).  In extreme cases, systems that were originally intended to be open-loop can be converted to closed-loop when the well doesn’t produce sufficient good quality water. Similarly, if salt water or hard water is encountered, systems originally intended to be open-loop can be converted to closed-loop where water quality will have no impact.

Thank you to Melanie Head at EnergySmart Alternatives for her valuable information. Feel free to contact EnergySmart Alternatives for more information.

Juli MacDonald, GreenBridge Architects

Blogging about the Garbage Garage has connected us with amazing eco-enthusiasts around the world. Thank you for all the interest and comments.  This blog (the final on this project) will focus on the garage’s construction, the best part! See previous posts for information on Project Genesis and Design, Permitting and Preparation for Construction.

Construction Process:

The Long Way Home crew (Liz and Adam Howland, Erica Temple and Aaron Colvin) came from Guatemala to install the rammed-earth tire walls. Once permits were in hand, The Riverview Company coordinated the foundation work, including the rebar that anchored the foundation to the tire walls (and reassured the building inspector). I tried to prepare for the crew’s arrival by ordering the soil that would be used to fill the tires. My extensive research and questioning of experts was not helpful, and the soil ended up being far too sandy for the required use. Quote from Adam from Long Way Home “That’s not dirt.” Drat.

So, once the crew arrived, they had the cumbersome task of finding soil that would compact well in the tires. The selected soil ended up being a mix of sand and clay. At this point, the comparisons with construction in the US and Guatemala began. In Guatemala, there was is no special search for soil – they use what is there. Fortunately, we were able to use the sand later in the project as a base for the slab and the pavers.

Elizabeth (the owner) supplied the tires. The selection of the tires was crucial for this project since the finished exterior wall needed to be vertical and would have a stucco finish. We couldn’t have various thicknesses and widths of tires as can be used in the Guatemalan projects, where the final buildings are more organic and rough in finish. It turned out that there was some variance in the tires, but the LWH crew was expert at sorting and placing the tires accordingly.

IMG_2732

Volunteers helping with the tire-pounding

IMG_2715

Liz and Erica getting the dirt ready

As part of the permit approvals, we were required to have the compaction of the soil tested during construction.  The compaction consistently met and exceeded all requirements.  (More Guatemala comparisons…compaction testing?!)

The Riverview Company followed up with the installation of the slab, the wall, attic and roof framing above the tires, and the plywood underlayment and stucco exterior finish.  IMG_2794

Brett Belisle from Riverview working on the roof

IMG_2799

Detail of the interior

Adam from the Long Way Home came back to install the glass bottles in the upper gable, and also installed some back-lighting behind the bottle wall to light the gable at night. The glass bottles were a challenge – we all love the idea of brightly colored bottles, but we had trouble finding bottles outside of clear, brown and green. There is a certain bright blue vodka bottle that we couldn’t get enough of…LWH did have a volunteer party, where everyone could get a chance to pound tires and to donate some bottles.  I gave tire-pounding a try that day, for about a minute.  Erica and Liz are now my new heroes.

IMG_2952

Adam working on the bottle wall

DSC_0098

Final exterior

DSC_0103

Final interior

DSC_0108

Interior at the bottle wall

A recap of the project:

The genesis of this project was my client, Elizabeth Rose, who is president of Long Way Home, a community-based, nonprofit organization in Guatemala that is building homes and schools using these construction methods.  In Guatemala, these construction types are a perfect solution for very poor residents who need shelter and community buildings.  In addition to the benefits noted above, building with tires, cans and bottles is cheap; the materials are virtually free, labor costs are low, and the building techniques are easily taught to otherwise unskilled laborers.

Elizabeth saw her family’s need for a garage as an opportunity to showcase alternative environmentally sustainable building practices and to help potential supporters understand the important work that Long Way Home is doing.

We are grateful to our amazing clients (Elizabeth and her husband Joe) for the opportunity to be involved in such an interesting and important project.  We appreciate their tenacity in getting the project done and their amazing outlook even during the biggest challenges we encountered.

Let us know if you have any questions about the Garbage Garage. We had such fun being a part of the project and hope that it will stand as a demonstration of creative approaches to construction that are sensitive to the needs of communities.

With best wishes,

Juli MacDonald, GreenBridge Architects

978.518.2811  juli@greenbridgearchitects.com

 

More information:

Georgetown Record’s article via Wicked Local

Wicked Local photo gallery

Tires, Cans and Bottles, Oh My!

Tires, Cans and Bottles, Oh My! (Part 2)

Our glimpse of Rome

November 17, 2010

My husband and I just got back from our trip to Rome – one of the strongest impressions we brought home is of the fabulous artisan shops dappled throughout the city.  While strolling in historic Rome, how wonderful to stumble upon a tiny shop where a man is tooling leather or another with a couple painting ceramic tiles.  Here is a sampling of some of the shops we happened upon on our trip…

Picture 538 

A mosaic tile shop.

Picture 540

A couple laughing and chatting with one another while they painted ceramic tiles.

Picture 100

The ‘glove lady’ who caresses your hands as part of the sales process.

Picture 542

The upholsterer’s shop.

Picture 075

Brass restoration?

Picture 546

Plaster artisan shop and scooter garage.

Picture 343

The leather shop owner.

Picture 074

Barber shop

Picture 073

Most importantly, the best gelato shop. 

Picture 030

Me happily enjoying Piazza Novona, feeling a million miles away from Home Depot and Walmart. 

These glimpses help us to remember what we love best about being in architecture and construction.  We have opportunities every day to select vendors, subcontractors, and consultants.  When we choose well, selecting those who are also devoted, diligent and who love their work, the process is rewarding and the projects are spectacular.

Arrivederci!

Juli

When I first started working as an architectural intern in Rockford, Illinois, Larry, the curmudgeonly head draftsman loved teasing me about my main job of drawing toilet rooms. He didn’t let me say ‘bathroom’, insisting that I say ‘toilet’. He was right – we were working on commercial toilet rooms and nobody was taking baths there…well, it’s been a lot of years, and now I’ve got a lot to say about toilets – Do you want your toilet in a separate room? Do you like an elongated bowl for comfort? What do you think of the water-saving dual-flush models? Do you have young sons? Discussing the toilet still isn’t my favorite part of the bath design process, but it’s important, because habits and details make all the difference in a successful bathroom. In the last greenbridge blog, we wrote about kitchen design and renovation. This month the focus is on bathrooms.

Guide-to-modern-bathrooms

The Bathroom. What does yours mean to you? Often the first room you enter after waking, it can set the tone for the day. For many, their master bath is a calming, restorative place to get away, an oasis. A powder room can be a showplace for guests. The hall bath can be a flurry of kid activity, requiring organization and compartmentalization. For some of us, our bath is a frustration. Common problems are outdated or failing fixtures, inadequate lighting, old finishes that are difficult to keep clean, and poor layout and storage.

Although it is usually one of the smallest rooms in the home, the renovation of a bathroom can be surprisingly complex and costly. A bathroom renovation usually requires the several skilled trades during construction – carpenter, electrician, plumber and heating contractor. Some bath renovations will also include custom cabinetry and special tile or stone installations. To keep costs in line, we offer rough design and cost estimates prior to undertaking full design work on a bathroom. The earliest phase in the design process is the best time to scale back if budget requires. Why spend time effort and money on a design that will not be feasible for you and your family?

In order to create a cost estimate and design, we ask a lot of our clients early in the project. As we discussed in other blog posts, while we are measuring and drawing the existing conditions, we assign our clients the task of thinking about their personal goals for the rooms that are included in the project. We then meet with them to review their goals for the space. What follows is a summary of the items covered for a bathroom renovation:

Getting Started

Start tagging those favorite online bathroom images! Pull out all those clipping or copies of bathrooms you’ve been enjoying in the magazines and newspapers. (We have great magazines and books to lend if you haven’t been doing this yet.) Make a quick note on each describing what you like about that bathroom. (example – ‘great colors’ or ‘beautiful tub’ ) These notes are invaluable for the designer who will pull these items together for you.

Before our initial design meeting, we’ll ask that you give some thoughts to the items below – again, you don’t need to have an answer of even a strong feeling about each item, but if you do, we want to be sure we’re including those items that are important to you.

kohler-yin-yang-wading-pool-lavatory

The ‘Yin-Yang Wading Pool’ sink by Kohler

ErinAdams_Mosaic_InterlockingCircles

Erin Adams mosaic tile by Ann Sacks

General Feeling

What words describe your dream bathroom? Soothing, tranquil, cool, cozy, a retreat, huge, modern, old-fashioned?

Layout

· How does your bath work for you now? If it doesn’t work so well for you, what have you thought about as a solution? Is there an opportunity to enlarge the room into part of an adjacent space?

· Are there any items in the existing bathroom that can be reused such as cabinetry, lighting or plumbing? For the items not being reused, we donate or recycle the items when possible.

· Do you have good natural light and ventilation in the room? Is there an opportunity to add more if necessary?

Fixtures and controls

· List the plumbing items: sink, toilet, tub and/or shower. Do you prefer separate sinks? Choose the basic style, for instance, pedestal sink or vanity, a freestanding tub or one that is mounted in a tub deck.

· Think about the shape and finish of the controls.

· Use low-flow faucets and low-flow or dual-flush toilets

· Consider a tankless hot water heater.

Floors and Walls

· What floor and wall materials will give you the look and feel you’re after? Can these materials be used to create patterns, and do you want to use them that way?

· Have you considered an in-floor heating system?

· Use low VOC paint and wood finishes.

· Consider eco-friendly finishes – wood flooring, recycled content ceramic tile, stone tile, or exposed concrete. Natural linoleum is made from natural materials can be finished in a range of colors, and can be installed without the use of adhesives.

Storage

· Will you have a vanity, and if so, what will be stored there?

· What other storage or display needs do you have in the room?

· What styles and finishes of cabinetry do you prefer?

· Make sure that cabinetry built with plywood (which often contains an urea formaldehyde glue which can cause a range of health issues) is properly sealed before entering your home. Better yet, use solid wood cabinetry and solid surface countertops to avoid the use of plywood.

Lighting Fixtures

· You’ll need lighting at the mirror(s) and some general light from overhead fixtures.

· Do you read or shave in the shower?

· While you are considering light, think about dimming and control options.

· Use halogen and LED lighting for light quality and energy efficiency.

Window treatments

Consider privacy needs, style, color and pattern (and contact lmk interiors ltd!)

Accessories

Mirrors, towel bars, tissue holders, soap dishes, and robe hooks are useful items with decorative importance. Think about size, style, finish, practicality and ease of cleaning.

Air Quality

· Install an exhaust fan that properly vents to the exterior.

· Plants improve the air quality and are an attractive balance to the otherwise hard surfaces in the room.

bathroom-green

Greening the Process

The early planning stage is the best time to consider opportunities to ‘green it up’, or to make selections or decisions that will improve the environmental impact and energy and water use for the space. In addition to some of the considerations noted above, the following are sustainable practices and detailing we include as standard in our renovation projects:

· A well-designed and ‘timeless’ space won’t need to be renovated again, saving energy and resources for the future.

· A bathroom renovation usually involves demolition of the wall surfaces – this is a great opportunity to not only improve the wall, ceiling and floor insulation, but to also better insulate all plumbing and heating pipes ductwork.

· Sealing leaks in doors, windows, plumbing, ducting, and electrical wire, and penetrations through exterior walls, floors, ceilings and soffits over cabinets will save additional energy.

A bathroom renovation involves a lot of planning and decision-making. At GreenBridge Architects and Riverview Builders, we work with you to ensure that the process is a smooth one and that it is ultimately rewarding for you and your family.

Please feel free to contact me to discuss your upcoming project, or to chat about what your bathroom means to you, I’ll even talk about your toilet!  Next month’s blog will take on the home offices.

juli@greenbridgearchitects.com  978.518.2811

As we head into the holidays, a lot of us start planning for next year’s home renovations.  Options for making changes to your home include working directly with an architect or designer, hiring a builder for those smaller projects that don’t require design or drawings, or a Design-Build option.  Design-Build is a term you’ve probably heard before, but may not be clear on  exactly what it means.  The Design-Build process combines the work of architectural design and construction, with one company having oversight over the entire project. The benefits include one-stop shopping, attention to the budget from the initial phases of design, and reduced project schedule.

I have always been an advocate of the process because of the benefits  it gives the homeowner and the design-build team.  Now with GreenBridge’s partnership with Riverview Builders, we are able to offer Design-Build services to our clients.  We want to get the word out on why your choosing this process with GreenBridge/Riverview makes great sense for your home.

IMG_1423 

Riverview Builders’ complete exterior restoration project of a home in Sudbury nears completion

A Team Committed to You

As architects, we work closely with you as we develop the design to include your dreams and vision while taking great care to understand and incorporate your home’s existing style and attributes. As builders, we bring superior project management, client-centered responsiveness and technical ability throughout the project, from early cost-estimation through your move-in date.

Throughout the project we will be your single contact. We will handle design and design revisions, project feedback, budgeting, permitting, construction issues, change orders, and billing. Dealing with only one entity simplifies your responsibilities, improves communication and gives you peace of mind – allowing you to enjoy the transformation of your home.

Constructability/Efficiency

We are dedicated to constantly educating ourselves on both the most current and traditional methods of design and construction. We are committed to sustainability in our projects and make use of natural passive methods of design as well as the practical application of new technologies and materials. Inherent in the design/build process is early involvement of the builder during design. Including the builder’s knowledge early into design fosters creative, cost-effective, and practical design and construction solutions.

Establish and Reduce Cost

A design-build model allows us to establish and agree to a fixed construction cost and scope of work early on in the project. Early knowledge of construction costs help us to design the project that you want that fits in your stated budget. As the design-builder, we have control over the design, scope and budget, so we give you clear cost and schedule adjustments for any changes you consider or make during the project.

Establish and Reduce Schedule

A design-build model also allows us to establish and agree to a fixed schedule of work early on in the project. An integrated design and building entity eliminates time otherwise required for the contractor and designer to coordinate their efforts and understanding of the project. In addition, the design-build process reduces the construction schedule because it allows us to work on several facets of your project at the same time. For instance, while the building permit is being approved, we can be working on the interior design and assisting you to pick out doors, windows, and appliances. We are also able to anticipate and order items with long lead-times.

As always, feel free to contact me with any questions or comments.  Have a wonderful and flavor-filled Thanksgiving!!! – Juli

juli@greenbridgearchitects.com

Follow

Get every new post delivered to your Inbox.